Test Paper-IV

- The value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$ is

- (d) $-\frac{1}{2}$.

$$\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right) \text{ is }$$

- (b) $\frac{1}{8}$
- (d) none of these
- 3. If $x + \frac{1}{x} = 2 \cos \theta$ then $x^n + \frac{1}{x^n}$ is equal to
 - (a) $2 \sin n\theta$
- (c) $\sin n\theta$
- (d) $2\cos n\theta$, $n \in Z^+$
- The ratio of the greatest value of $2 \cos x + \sin^2 x$ to its least value is
 - (a) $\frac{1}{4}$
- (b) $\frac{9}{4}$
- (d) none of these
- The value of $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15}$ is
- (b) $\frac{1}{8}$
- (d) none of these
- If $\tan \theta = n \tan \phi (n > 0)$, then
 - (a) $\tan^2(\theta \phi) > \frac{(n-1)^2}{4n}$
 - (b) $\tan^2 (\theta \phi) \ge \frac{(n-1)^2}{4}$
 - (c) $\tan^2 (\theta \phi) \le \frac{(n-1)^2}{4n}$
- Let n be a fixed positive integer such that

$$\sin\left(\frac{\pi}{2n}\right) + \cos\left(\frac{\pi}{2n}\right) = \frac{\sqrt{n}}{2}$$
, then

- (b) n = 5
- (d) none of these
- If $4\cos^2\theta + \sqrt{3} = 2(\sqrt{3} + 1)\cos\theta$, then $\theta =$
 - (a) $2n\pi \pm \frac{\pi}{3}$ (b) $2n\pi \pm \frac{\pi}{4}$

- (c) $2n\pi \pm \frac{\pi}{6}$
- (d) none of these
- From the identity $\sin 3x = 3 \sin x 4 \sin^3 x$, it follows that if x is real and |x| < 1, then
 - (a) $(3x-4x^3) > 1$
- (b) $(3x-4x^3) \le 1$
- (c) $(3x 4x^3) < 1$
- (d) Nothing can be said about $3x 4x^3$
- The set of all x in the interval $[0, \pi]$ for which $2\sin^2 x 3\sin x + 1 \ge 0$ is
 - (a) $\{\pi/2\}$
- (b) ϕ
- (c) $\{x: 0 \le x \le \pi/4\}$
- (d) $\{x: 0 \le x \le \pi/6, \pi/2, 5\pi/6 \le x \le \pi\}$
- 11. One root of the equation $\cos x + \frac{1}{2} = 0$ lies in the interval

 - (a) $\left| 0, \frac{\pi}{2} \right|$ (b) $\left| -\frac{\pi}{2}, 0 \right|$

 - (c) $\left[\frac{\pi}{2}, \pi\right]$ (d) $\left[\pi, \frac{3\pi}{2}\right]$
- 12. $2\left(\tan^{-1}1 + \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) + \tan^{-1}3\right)$ is equal to
 - (a) π

- (d) none of these
- 13. The value of
 - $\tan^{-1}\left(\frac{1}{2}(\tan 2A) + \tan^{-1}(\cot A) + \tan^{-1}(\cot^3 A)\right)$ is
 - (a) 0 if $\frac{\pi}{4} < A < \frac{\pi}{2}$ (b) p, if $0 < A < \frac{\pi}{4}$
 - (c) both (a) and (b) (d) none of these
- 14. If $2\tan^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan\left(\frac{\theta}{2}\right)\right] = \cos^{-1}\left[\frac{2a+3b}{3a+2b}\right]$,
 - then $\cos\theta$ is equal to

- 15. If $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$ then x is equal to
 - (a) 1

	(c) $\frac{4}{5}$	(d) $\frac{1}{5}$		the tower. He observed changes from 30° to 45 of the car	ed that angle of depression 5° in 3 sec. What is the speed	
16.		des of a triangle are 3, 4 and		(a) 36 km/hr	(b) 72 <i>km/hr</i>	
	5 units then R is	4 > 2.0		(c) 18 km/hr	(d) $30 km/hr$	
		(b) 3.0	24.		orthocentre at (1, 1) and	
15				_		
17.	In any $\triangle ABC$, $rr_1 + r_2$ (a) ab	(b) <i>ac</i>			$\left(\frac{3}{4}\right)$, then the coordinates of	
	(c) <i>bc</i>	(d) none of these		the centroid of the tri		
18.	If in a triangle ABC, t	$\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in		(a) $\left(\frac{4}{3}, -\frac{5}{6}\right)$	(b) $\left(\frac{4}{3}, \frac{5}{6}\right)$	
	H.P., then the sides a	, b, \tilde{c} are in		(45)	(4 5)	
	(a) A.P.			(c) $\left(-\frac{4}{3}, \frac{5}{6}\right)$	(d) $\left(-\frac{1}{3}, -\frac{1}{6}\right)$	
	(c) H.P.	(d) None of these	25.	A line joining two no	ints A (2, 0) and B (3, 1) is	
19.	The value $\frac{1}{r_1^2} + \frac{1}{r_2^2} + \dots$	3	43.	rotated about A in ant an angle 15°. If B good	iclockwise direction through c to C in the new position,	
	() .	$a^2 + b^2 + c^2$		then the coordinates of	of C are	
	(a) 0 (c) $\frac{\Delta^2}{a^2 + b^2 + c^2}$	(b) ${4^2}$		(a) $\left(2,\sqrt{\frac{3}{2}}\right)$	(1) (2) (3)	
		$\frac{a^2+b^2+a^2}{a^2+a^2}$		(a) $\left(\frac{2}{3}, \sqrt{\frac{2}{2}} \right)$	(b) $\left(2,-\sqrt{2}\right)$	
	(c) $\frac{\Delta}{2}$ $\frac{12}{2}$ $\frac{2}{2}$	(d) $\frac{u + b + c}{4}$		(1 5)	` '	
20.		ee broken over by the wind		(c) $\left(2 + \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right)$	(d) none of these	
	makes an angle of 30	O° with the ground, and the	26.	P(3, 1) O(6, 5) and	R(x, y) are three points such	
		to the point where the top of	20.	that the angle RPQ is a right angle and the area of		
	_	round is 10m, the height of		_	number of such points R is	
	the tree is			(a) 0	(b) 1	
	(a) $20\sqrt{3}$ m			(c) 2	(d) 4	
	(c) $15\sqrt{3}$ m	(d) none of these		` '		
21.	A ballon is observed	simultaneously from three	27.		en the straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c}$	
	_	a straight road directly under		= 0 always passes thro	ough a fixed point, that point	
	_	ion at B is twice and at C is		is	(1) (1 0)	
		distance between <i>A</i> and <i>B</i> is tance between <i>B</i> and <i>C</i> is 100		(a) $(-1, -2)$	(b) (-1, 2)	
		t of balloon between B and C		(c) (1, – 2)	(d) $\left(1, -\frac{1}{1}\right)$	
	_	e height of balloon is given	20	Tribut Circum Comment in	2)	
	by		28.	The figure formed by t $x - y = 4$, is	$he lines x^2 + 4xy + y^2 = 0 and$	
	(a) 50 metres	(b) $50\sqrt{3}$ metres		(a) A right angled tri	anole	
				(b) An isosceles trian	=	
	(c) $50\sqrt{2}$ metres	(d) none of these		(c) An equilateral tria	~	
22.	3 times the height of the tower. The tower is found to sutend at a point 3 km away on the horizontal through the foot of the hill, an angle θ where $\tan \theta$			(d) none of these	ingic	
			29.	2		
			49.	+ $2y^2 + 11x - 5y + \lambda = 0$ represents two straight lines is		
				$\begin{array}{cccc} & 1 & 1 & 2y + 1 & 1 & 2y + 1 & 2y \\ & & & & & & & & & & & & & & & & & & $	(b) 2	
	$=\frac{1}{9}$. The height of the	tower is		(c) -1	(d) -2	
	(a) 12	(b) 3	30.	` '	h join the origin to the points	
		(-)	50.		ine $y = mx + c$ with the curve	
	(c) $\frac{9 \pm \sqrt{33}}{8}$	(d) none of these		$x^2 + y^2 = a^2$ are at rig		
22	o				(b) $2c^2 = a^2 (1 + m^2)$	
23.	·	ng on a tower of height		(c) $2c^2 = a^2 (1 - m^2)$		
	$15(\sqrt{3}+1) m$ and obse	erving a car coming towards		(-, " (1 ")")	(-, 1010 01 11000	

31.	If the equation $2x^2 - 2hxy + 2y^2 = 0$ represents two
	congruent lines through origin, then $h =$

(a)
$$\pm 2$$

(b)
$$\pm 3$$

(c)
$$\pm 6$$

(d)
$$\pm 4$$

32. The sides of a square are
$$x = 2$$
, $x = 3$, $y = 1$ and $y = 2$. The equation of the circle drawn on the diagonals of the square as its diameter, is

(a)
$$x^2 + y^2 - 5x - 3y + 8 = 0$$

(b)
$$x^2 + y^2 + 5x - 3y + 8 = 0$$

(b)
$$x^2 + y^2 + 5x - 3y + 8 = 0$$

(c) $x^2 + y^2 + 5x + 3y - 8 = 0$

(d) none of these

33. The circles
$$x^2 + y^2 - 10x + 16 = 0$$
 and $x^2 + y^2 = r^2$ intersect each other in two distinct points if

(a)
$$r < 2$$

(b)
$$r > 8$$

(c)
$$2 < r < 8$$

(d)
$$2 \le r \le 8$$

34. The two circles
$$x^2 + y^2 - 2x - 4y = 0$$
 and $x^2 + y^2 - 8y - 4 = 0$

- (a) touch externally (b) touch internally
- (c) intersect
- (d) do not touch

35. The number of points on the circle
$$x^2 + y^2 - 4x - 10y + 13 = 0$$
 which are at a distance 1 from the point (-3, 2) is

- (a) 1
- (b) 2
- (c) 3
- (d) none of these

36. The equation of the normal to the parabola
$$y^2 = 4x$$
 which is parallel to the line $y - 2x + 5 = 0$ is

(a)
$$2x + y - 12 = 0$$

(a)
$$2x + y - 12 = 0$$
 (b) $2x - y - 12 = 0$

(c)
$$x + 2y - 12 = 0$$
 (d) none of these

37. If the tangent to the parabola
$$y^2 = 4ax$$
 meets the axis in T and tangent at the vertex A in Y and the rectangle TAYG is completed, then the locus of G is

- (a) $y^2 + 2ax = 0$ (b) $y^2 + ax = 0$ (c) $x^2 + ay = 0$ (d) none of these

38. If the parabola
$$x^2 = ay$$
 makes an intercept of length $\sqrt{40}$ on the line $y - 2x = 1$, then a is equal to

- (a) 1

- (d) 2

39. If
$$PSQ$$
 is the focal chord of the parabola $y^2 = 8x$ such that $SP = 6$, then the length SQ is

- (a) 6
- (b) 4
- (c) 3
- (d) none of these

$$f(x) = {}^{24-x}C_{3x-1} + {}^{40-6x}C_{8x-10}$$
 is,
(a) {2, 3} (b) {1, 2, 3}

- (c) $\{1, 2, 3, 4\}$
- (d) none of these

$$f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + [\log(3-x)]^{-1}$$
 is

- (a) $[-6, 3)\setminus\{2\}$
- (b) $[-6, 2) \cup (2, 3]$
- (c) [-6, 3]
- (d) [-6, 3)

42. The domain of the function
$$f(x) = \frac{1}{\sqrt{|\sin x| + \sin x}}$$
 is

- (a) $(-2n\pi, 2n\pi)$
- (b) $(2n\pi, (2n + 1) \pi)$

(c)
$$\left((4n-1)\frac{\pi}{2}, (4n+1)\frac{\pi}{2} \right)$$

- (d) none of these
- **43.** The domain of the function

$$f(x) = \log_3 \left[-\log_{\frac{1}{2}} \left(1 + \frac{1}{x^{1/5}} \right) - 1 \right]$$
 is

- (a) $(-\infty, 1)$
- (c) $(1, \infty)$
- (d) none of these

44. If
$$f(2) = 2$$
 and $f'(2) = 1$ then $\lim_{x \to 2} \frac{2x^2 - 4f(x)}{x - 2}$ is equal

- (a) 4
- (b) -4
- (c) 2
- (d) -2

$$45. \quad \lim_{n \to \infty} \left(\cos \frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{8} \dots \cos \frac{x}{2^n} \right) =$$

- (a) $\frac{x}{\sin x}$ (b) $\frac{\sin x}{x}$
- (c) 0
- (d) none of these

46.
$$\lim_{n \to \infty} \prod_{4=3}^{n} \left(\frac{r^3 - 1}{r^3 + 1} \right)$$

- (a) $\frac{1}{3}$
- (c) $-\frac{2}{3}$
- (d) none of these

47.
$$\lim_{x \to a} \left(\frac{\sin x}{\sin a} \right)^{\frac{1}{x-a}}, \ a \neq n\pi, \ n \text{ is an integer, equals}$$

- (a) $e^{\cot a}$
- (c) $e^{\sin a}$

48. If
$$f(x) = \begin{cases} \frac{[x]-1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
, then $f(x)$ is

- (a) continuous as well as differentiable at x = 1
- (b) differentiable but not continuous at x = 1
- (c) continuous but not differentiable at x = 1
- (d) neither continuous nor differentiable at x = 1

49. Let
$$f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x - 1)(x - 2)|}, & x \neq 1, 2 \\ 6, & x = 1 \\ 12, & x = 2 \end{cases}$$
. Then $f(x)$ is

continuous on the set

- (a) $R\setminus\{2\}$
- (b) $R \setminus \{1, 2\}$
- (c) R
- (d) $R\setminus\{1\}$
- The function $f(x) = (1 + x)^{\cot x}$ is not defined at 50. x = 0. The value of f(0) so that f(x) becomes continuous at x = 0, is
 - (a) 1
- (b) 0
- (c) e
- (d) none of these
- **51.** Let $f(x) = [2x^3 5]$, where [] denotes the greatest integer function. Then the number of points in (1, 2), where the function is discontinuous is
 - (a) 0
- (b) 13
- (c) 15
- **52.** If $y = (\sin^{-1}x)^2$, then $(1 x^2) \frac{d^2y}{dx^2}$ is equal to

 - (a) $x \frac{dy}{dx} + 2$ (b) $x \frac{dy}{dx} 2$
 - (c) $-x \frac{dy}{dx} + 2$ (d) none of these
- **53.** If $f(x) = \log\left(\frac{m(x)}{n(x)}\right)$, m(1) = n(1) = 1 and m'(1) = n'(1) = 2, then f'(1) is equal to
 - (a) 0
- (b) 1
- (c) -1
- (d) none of these
- **54.** The differential coefficient of $\tan^{-1} \frac{2x\sqrt{1-x^2}}{1-2x^2}$ w.r.t.

$$\sec^{-1} \frac{1}{2x^2 - 1}$$
 at $x = \frac{1}{2}$ is equal to

- (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$
- (c) 1
- (d) none of these
- **55.** If $x^2 + y^2 = 1$, then
 - (a) $yy'' 2(y')^2 + 1 = 0$ (b) $yy'' + (y')^2 + 1 = 0$
 - (c) $yy'' + (y')^2 1 = 0$ (d) $yy'' + 2(y')^2 + 1 = 0$
- **56.** If the normal at the point " t_1 " on the curve $xy = c^2$ meets the curve again at " t_2 ", then
 - (a) $t_1^3 t_2 = 1$
- (b) $t_1^3 t_2 = -1$
- (c) $t_1 t_2^3 = -1$ (d) $t_1 t_2^3 = 1$.
- **57.** The minimum value of $\log_a x + \log_x a$, 0 < x < a, is

- (a) 1
- (b) 2
- (c) -2
- (d) none of these
- **58.** The function $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$ is
 - (a) increasing on $(0, \infty)$
 - (b) decreasing on $(0, \infty)$
 - (c) increasing on $(0, \pi/e)$, decreasing on $(\pi/e, \infty)$
 - (d) decreasing on $(0, \pi/e)$, increasing on $(\pi/e, \infty)$
- For the curve $x = t^2 1$, $y = t^2 t$, the tangent is parallel to x-axis where

 - (a) $t = \frac{1}{\sqrt{3}}$ (b) $t = -\frac{1}{\sqrt{3}}$
 - (c) t = 0
- (d) $t = \frac{1}{2}$
- **60.** $\int \frac{\cot x}{\sqrt{\sin x}} dx$ is equal to

 - (a) $2\sqrt{\sin x} + C$ (b) $\frac{1}{2\sqrt{\sin x}} + C$

 - (c) $\frac{-2}{\sqrt{\sin x}} + C$ (d) $\frac{2}{\sqrt{\sin x}} + C$
- **61.** $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$ is equal to
 - (a) $2\sqrt{1-x} + \cos^{-1}\sqrt{x} + \sqrt{x-x^2} + C$
 - (b) $2\sqrt{1-x} \cos^{-1}\sqrt{x} + \sqrt{x-x^2} + C$
 - (c) $-2\sqrt{1-x} + \cos^{-1}\sqrt{x} + \sqrt{x-x^2} + C$
 - (d) none of these
- **62.** If $\int \frac{\sqrt{\cot x}}{\sin x \cos x} dx = P \sqrt{\cot x} + Q$, then P equals
 - (a) 1

- **63.** $\int \frac{d^2}{dx^2} (\tan^{-1}x) dx$ is equal to
 - (a) $\frac{1}{1+x^2} + C$ (b) $\tan^{-1} x + C$
 - (c) $x \tan^{-1} x \frac{1}{2} \log (1 + x^2) + C$
 - (d) none of these
- **64.** $\int_{0}^{\infty} (\tan x + \cot x) \ dx \text{ is equal to}$

 - (a) $\frac{\pi}{2} \log 2$ (b) $-\frac{\pi}{2} \log 2$ (c) $\pi \log 2$ (d) none of these
- **65.** The value of the integral $\int_{0}^{\pi} \frac{x^2 \sin x}{(2x \pi)(1 + \cos^2 x)} dx$ is

(a)	π^2		
	4		

(b)
$$\frac{\pi^2}{2}$$

(c)
$$\frac{\pi^2}{6}$$

(d) none of these

- **66.** $\int [x^2] dx$, where [.] denotes the greatest in integer function, is equal to
 - (a) $\sqrt{2} 2$
- (b) $2 \sqrt{2}$
- (c) $2 + \sqrt{2}$
- (d) none of these
- 67. $\int |\sin x + \cos x| \, dx \text{ is equal to}$
 - (a) $\sqrt{2}$

- (d) none of these
- **68.** The general solution of the differential equation $\frac{dy}{dx} =$ $y \tan x - y^2 \sec x$ is
 - (a) $\tan x = (c + \sec x) y$ (b) $\sec y = (c + \tan y) x$
 - (c) $\sec x = (c + \tan x) y$ (d) none of these
- **69.** Solution of the equation $x dy = \left(y + x \frac{f(y/x)}{f'(y/x)} \right) dx$ is

(a)
$$f\left(\frac{x}{y}\right) = cy$$

(a)
$$f\left(\frac{x}{y}\right) = cy$$
 (b) $f\left(\frac{y}{x}\right) = cx$

(c)
$$f\left(\frac{y}{x}\right) = cxy$$
 (d) none of these

- **70.** The degree of the differential equation

$$\left(\frac{d^4y}{dx^4}\right)^{3/5} - 5\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 5 = 0 \text{ is}$$

- (a) 2
- (c) 4
- (d) 5
- 71. The differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to x-axis, is
 - (a) $a \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
 - (b) $2a \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
 - (c) $2a \frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^3 = 0$ (d) none of these
- 72. The complex number z = x + iy which satisfy the equation $\left| \frac{z - 5i}{z + 5i} \right| = 1$ lie on
 - (a) the x-axis
- (b) the line y = 5
- (c) a circle through the origin
- (d) none of these

- 73. The value of $\left(\frac{1+i}{\sqrt{2}}\right)^8 + \left(\frac{1-i}{\sqrt{2}}\right)^8$ is equal to
 - (a) 4
- (c) 8
- (d) 2
- **74.** If 1, ω , ω^2 are the three cube roots of unity, then $(1 - \omega + \omega^2) (1 - \omega^2 + \omega^4) (1 - \omega^4 + \omega^8) \dots \text{ to } 2n$ factors =
 - (a) 2^n
- (c) 2^{4n}
- (d) none of these
- 75. The complex number z satisfying the equations |z-i| = |z+1| = 1 is
 - (a) 0
- (b) 1 + i
- (c) -1+i
- (d) 1 i
- **76.** In the series 3, 7, 11, 15, ... and 2, 5, 8, ... each continued to 100 terms, the number of terms that are identical is
 - (a) 21
- (b) 27
- (c) 25
- (d) none of these
- 77. The sum of positive terms of the series

$$10 + 9 \frac{4}{7} + 9 \frac{1}{7} + \dots \text{ is}$$

- (a) $\frac{352}{7}$
- (b) $\frac{437}{7}$

- **78.** If S_1 is the sum of an arithmetic series of 'n' odd number of terms and S_2 , the sum of the terms of the series in odd places, then $\frac{S_1}{S_2}$ =

- (a) $\frac{2n}{n+1}$ (b) $\frac{n}{n+1}$ (c) $\frac{n+1}{2n}$ (d) $\frac{n+1}{n}$ The sum of n terms of m A.P.s are S_1 , S_2 , S_3 , ..., S_m . If the first term and common difference are 1, 2, 3, ..., m respectively, then $S_1 + S_2 + \dots + S_n = 1$ respectively, then $S_1 + S_2 + S_3 + ... + S_m =$ (a) $\frac{1}{4} mn (m+1) (n+1)$ (b) $\frac{1}{4} mn (m+1) (n+1)$

 - (c) 2mn(m+1)(n+1)
 - (d) none of these
- **80.** If $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ has equal roots, then a, b, c are in
 - (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) none of these
- **81.** The equation

$$\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$$
 has

- (a) no solution
- (b) one solution
- (c) two solutions
- (d) more than two solutions
- 82. If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the reciprocals of their squares, then bc^2 , ca^2 and ab^2 are in
 - (a) A.P.
- (b) GP.

(.)	TID
(C)	нР
()	11.1

(d) none of these

83. In copying a quadratic equation of the form $x^2 + px + q$ = 0, a student wrote the coefficient of x incorrectly and the roots were found to be 3 and 10; another student wrote the same equation but he wrote the constant term incorrectly and thus he found the roots to be 4 and 7. The roots of the correct equation are

(b) 4, 6

(d) none of these

$$x_n = \frac{195}{4^n P_n} - \frac{n+3}{n+1} P_{n+1}, n \in N \text{ is}$$

(a) 2

(c) 4

(d) none of these

- The number of ways in which the letters of the word "STRANGE" can be arranged so that the vowels may appear in the odd places, is
 - (a) 1440

(b) 1470

(c) 1370

(d) none of these

- The number of ways in which 7 people can be arranged 86. at a round table so that 2 particular persons may be together, is
 - (a) 132

(b) 148

(c) 240

(d) none of these

- The number of ways in which a committee of 3 ladies and 4 gentlemen can be appointed from a meeting consisting of 8 ladies and 7 gentlemen, if Mrs X refuses to serve in a committee if Mr. Y is a member is
 - (a) 1960

(b) 1540

(d) none of these

- **88.** The 7th term in $\left(\frac{1}{y} + y^2\right)^{10}$, when expanded in descending power of y, is

(b) $\frac{y^2}{210}$

(d) none of these

The coefficient of x^{30} in the expansion of

$$(1+3x+3x^2+x^3)^{15}$$
 is

(a) $^{45}C_{15}$

(b) $^{45}C_{25}$

(c) $^{45}C_{30}$

(d) $^{15}C_{11}$

- **90.** The coefficient of x^5 in the expansion of $(1+x^2)^5 (1+x)^4$ is
 - (a) 40

(b) 50

(c) -50

(d) 60

91. In the expansion of $(x + a)^n$ if the sum of odd terms be P and the sum of even terms be O, then 4PO =

(a)
$$(x+a)^n - (x-a)^n$$
 (b) $(x+a)^n + (x-a)^n$

(c)
$$(x+a)^{2n} - (x-a)^{2n}$$
 (d) none of these

The sum of the series $\frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \dots \infty$ is

(a) *e*

93. The sum of the series
$$1 + \frac{1}{2!} + \frac{1 \cdot 3}{4!} + \frac{1 \cdot 3 \cdot 5}{6!} + \dots$$
 is

(a)
$$\sqrt{e}$$

(c)
$$e^{-1/2}$$

94. The value of
$$(1+3)\log_e 3 + \frac{(1+3^2)}{2!}(\log_e 3)^2$$

$$+\frac{(1+3^3)}{3!}(\log_e 3)^3 + ... \infty$$
 is

(a) 18

(c) 36

(d) none of these

95. The value of
$$(x+y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x^2+y^2)$$

$$+\frac{1}{3!}(x+y)(x-y)(x^4+y^4+x^2y^2)+... \infty$$
 is

(a) $e^{x^2} + e^{y^2}$ (b) $e^{x^2 - y^2}$

(c) $e^{x^2} - e^{y^2}$

(d) none of these

96. If
$$X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, the value of X^n is

(a)
$$\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$$

(c)
$$\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$$
 (d) none of these

- **97.** If A is 3×4 matrix and B is a matrix such that A'B and BA' are both defined. Then B is of the type
 - (a) 3×4

(b) 3×3

(c) 4×4

(d) 4×3

- If B is a non-singular matrix and A is a square matrix, then det $(B^{-1}AB)$ is equal to
 - (a) $\det(A^{-1})$

(b) $\det(B^{-1})$

(c) det (*A*)

(d) det (*B*)

- **99.** If A and B are two matrices such that A + B and AB are both defined, then:
 - (a) A and B are two matrices not necessarily of same order
 - (b) A and B are square matrices of same order.
 - (c) number of columns of A = number of rows of B
 - (d) none of the above.

100. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
, $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$A^{-1} = \frac{1}{6} \Big[A^2 + CA + dI \Big]$$

where $c, d \in R$, the pair of values (c, d) are

- (a) (6, 11)
- (b) (6,-11)
- (c) (-6, 11)
- (d) (-6, -11)

Answer keys

1. (d)	2. (b)	3. (d)	4. (c)	5. (c)	6. (c)
7. (b, c)	8. (c)	9. (c)	10. (d)	11. (b, c)	12. (c)
13. (b)	14. (c, d)	15. (d)	16. (b)	17. (c)	18. (a)
19. (a)	20. (a)	21. (a)	22. (a)	23. (a)	24. (b)
25. (c)	26. (c)	27. (c)	28. (c)	29. (b)	30. (c)
31. (c)	32. (a)	33. (c)	34. (b)	35. (d)	36. (b)
37. (b)	38. (a, b)	39. (c)	40. (a)	41. (a)	42. (b)
43. (b)	44. (a)	45. (b)	46. (b)	47. (a)	48. (a)
49. (a)	50. (d)	51. (a)	52. (b)	53. (a)	54. (c)
55. (a)	56. (b)	57. (b)	58. (b)	59. (b)	60. (a)
61. (a)	62. (c)	63. (b)	64. (c)	65. (a)	66. (b)
67. (b)	68. (c)	69. (b)	70. (b)	71. (b)	72. (a)
73. (b)	74. (b)	75. (a, c)	76. (c)	77. (c)	78. (a)
79. (a)	80. (c)	81. (d)	82. (a)	83. (a)	84. (c)
85. (a)	86. (c)	87. (d)	88. (c)	89. (c)	90. (d)
91. (c)	92. (a)	93. (a)	94. (b)	95. (c)	96. (d)
97. (a)	98. (c)	99. (b)	100. (c)		