1. One litre of water contains 10^{-7} moles of H^{+}ions. Degree of ionisation of $\mathrm{H}_{2} \mathrm{O}$ is
(a) 1.8×10^{-7}
(b) 0.8×10^{-9}
(c) 3.6×10^{-7}
(d) 3.6×10^{-9}
2. The dissociation constant of weak acid is 1.0×10^{-5}. The equilibrium constant for the reaction with strong base is
(a) 1.0×10^{-5}
(b) 1.0×10^{-9}
(c) 1.0×10^{7}
(d) 1.0×10^{14}
3. $\quad 0.2 \mathrm{M}$ solution of formic acid is ionised 3.2%. Its ionisation constant is
(a) 9.6×10^{-3}
(b) 2.1×10^{-4}
(c) 1.25×10^{-6}
(d) 4.8×10^{-5}
4. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of Kw at $90^{\circ} \mathrm{C}$ is
(a) 10^{-6}
(b) 10^{-8}
(c) 10^{-12}
(d) 10^{-14}
5. Which of the following has the highest pH ?
(a) distilled water
(b) $1 \mathrm{M} \quad \mathrm{NH}_{3}$
(c) 1 M NaOH
(d) $\mathrm{H}_{2} \mathrm{O}$ saturated with Cl
6. The pH of 0.1 M acetic acid is $(\alpha=100 \%)$
(a) less than one
(b)greater than one
(c) one
(d) seven
7. An acid solution of $\mathrm{pH}=6$ is diluted hundred times. The pH of the solution becomes
(a) 6.95
(b) 6
(c) 4
(d) 8
8. A solution contains 10 ml of 0.1 N NaOH and 10 ml of $0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The pH of this solution is
(a) 1
(b) <7
(c) >7
(d) 0
9. Which of the following mixture will have the pH close to 1 ?
(a) 100 ml of $\mathrm{M} / 10 \mathrm{HCl}+100 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(b) 55 ml of $\mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(c) 10 ml of $\mathrm{M} / 10 \mathrm{HCl}+90 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(d) 75 ml of $\mathrm{M} / 5 \mathrm{HCl}+25 \mathrm{ml}$ of $\mathrm{M} / 5 \mathrm{NaOH}$
10. Which of the following salts, when dissolved in water, undergoes hydrolysis ?
(a) NaCl
(b) $\mathrm{NH}_{4} \mathrm{Cl}$
(c) KCl
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
11. The pH of 0.1 M solution of the given salts increase in the order
(a) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
(b) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
(c) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
(d) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
12. One mole of SO_{3} was placed in a two litre vessel at a certain temperature. The following equilibrium was established in the vessel
$2 \mathrm{SO}_{3}(\mathrm{~g}) 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
At equilibrium, the vessel was found to contain 0.5 mole of SO_{3}. The value of K would be
(a) 0.25
(b) 0.125
(c) 0.5
(d) 1
13. The value of $\Delta \mathrm{G}^{\circ}$ for a reaction, having $\mathrm{K}_{\mathrm{C}}=1$, would be
(a)- RT
(b) -1
(c) 0
(d) + RT
14. For a reaction, the value of K_{C} increases with increase in temperature. The $\Delta \mathrm{H}$ for the reaction would be
(a) positive
(b) negative
(c) zero
(d)can not be predicted
15. In a reaction, $\mathrm{A}+2 \mathrm{~B} 2 \mathrm{C}$, if 2.0 moles of $\mathrm{A}, 3.0$ moles of B and 2.0 moles of C are placed in a flask of 2 L capacity and equilibrium concentration of C is 0.5 mole L^{-1}. The value of equilibrium constant Kc of the reaction is
(a) 0.073
(b) 0.147
(c) 0.05
(d) 0.026
16. At constant temperature, the equilibrium constant (Kp) for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} 2 \mathrm{NO}$ is expressed by $\mathrm{K}_{\mathrm{p}}=\left(4 \mathrm{x}^{2} \mathrm{P}\right) /\left(1-\mathrm{x}^{2}\right)$ where $\mathrm{P}=$ pressure and $\mathrm{x}=$ extent of decomposition. Which one of the following statements is true ?
(a) Kp increases with increase of P
(b)Kp increases with increase of x
(c) Kp increases with decrease of x
(d) Kp remains constant with change in P and x
17. pH of $0.01 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $0.02 \mathrm{M} \mathrm{NH} 4 \mathrm{NH}^{\mathrm{OH}}$ buffer $\left(\mathrm{p} \mathrm{Ka}\right.$ of $\left.\mathrm{NH}_{4}^{+}=9.26\right)$ is
(a) $4.74+\log 2$
(b) $4.74-\log 2$
(c) $4.74+\log 1$
(d) $9.26+\log 1$
18. HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$ solution have equal pH . If $\mathrm{K}_{1} / \mathrm{K}_{2}$ (ratio of acid dissociation constants) is 4 , their molar concentration will be
(a) 2
(b) 0.5
(c) 4
(d) 0.25
19. pH of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 12 . Milli equivalents of $\mathrm{Ca}(\mathrm{OH})_{2}$ present in 100 ml . solution will be
(a) 1
(b) 0.5
(c) 0.05
(d) 5
20. A buffer solution contains 100 ml . of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 200 ml of 0.02 M CH 33 COONa . 700 ml . of $\mathrm{H}_{2} \mathrm{O}$ is further added. The pH values before and after dilution are respectively
(a) 5.04, 5.04
(b) $5.04,0.504$
(c) $5.04,1.54$
(d) $5.34,5.34$

Answer Keys

1. (a) 2. (a) 3. (b) 4. (c) 5. (c) 6. (c) 7. (a) 8. (c) 9. (d) 10. (b)
2. (b) 12. (b) 13. (c) 14. (a) 15 . (c) 16. (d) 17. (d) 18. (d) 19. (a) 20. (d)
